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We model the spontaneous assembly of a capsid �a virus’ closed outer shell� from many copies of identical
units, using entirely irreversible steps and only information local to the growing edge. Our model is formulated
in terms of �i� an elastic Hamiltonian with stretching and bending stiffness and a spontaneous curvature, and
�ii� a set of rate constants for the addition of new units or bonds. An ensemble of highly irregular capsids is
generated, unlike the well-known icosahedrally symmetric viruses, but �we argue� plausible as a way to model
the irregular capsids of retroviruses such as HIV. We found that �i� the probability of successful capsid
completion decays exponentially with capsid size; �ii� capsid size depends strongly on spontaneous curvature
and weakly on the ratio of the bending and stretching elastic stiffnesses of the shell; �iii� the degree of
localization of Gaussian curvature �a measure of facetedness� depends heavily on the ratio of elastic stiffnesses.
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I. INTRODUCTION

In recent years the question of spontaneous assembly has
arisen in many apparently disconnected fields, including
nanofabrication �1,2�, robotics and microelectronics �3,4�,
and particularly, biology �5,6�. While the assembly of many
biological structures, such as actin filaments and chromatin,
requires energy in the form of ATP hydrolysis �7–9�, numer-
ous other structures assemble spontaneously. In particular are
lipid bilayers �10,11� and virus capsids �12,13�, the subject of
this paper.

A. Quasiequivalence

The capsid of a virus is the shell of proteins surrounding
and protecting the viral genome �DNA and RNA�. Capsids
are observed in a wide variety of sizes, ranging into the
thousands of proteins; most known capsids have icosahedral
or cylindrical point-group symmetry �14,15�. A typical virus
uses only one, or a few, kinds of protein in its capsid; con-
sequently noted, typical capsids are necessarily built from
copies of the same unit in positions that are not equivalent by
any global symmetry �16�. However, Caspar and Klug �16�
identified an elegant approximate symmetry, which they
called quasiequivalence. The key idea is that locally, every
bit of the capsid is a patch of triangular lattice; in an infinite
triangular lattice, all the units would be symmetry equivalent.
They argued that typical proteins could accommodate a
variation of ±5° in bond angles �17�, while maintaining the
same microscropic bonding between proteins. This allows
the representation of any capsid as a network of approxi-
mately equilateral triangles, with a constraint �due to the
bond angle limitation� that the number of triangles around
every vertex must always be either five or six. The points of
local fivefold symmetry may be identified with the topologi-
cal defects called disclinations �to be defined in Sec. II A�,
and any closed shell must contain exactly twelve of them. In

an icosahedral capsid, the disclinations form the vertices of a
large icosahedron, the edges of which have length �T in
lattice units, where the triangulation number T
=1,3 ,4 ,7 , . . . is one of a sequence of discrete allowed inte-
gers �16�, so that there are 60T small triangles.

We emphasize that the rules of quasiequivalence do not
force any global symmetry, nor do they fix the size of the
completed capsid. Thus it is surprising that many viruses
reliably assemble large symmetric capsids. The challenge to
theory is to explain both the size and shape selection, or at
least to explain why a closed shell is formed, when tubes or
sheets would be equally consistent with the local bonding. It
would not be surprising if models predict different capsids
depending on parameters �which might experimentally cor-
respond to pH, salt content, catalysts, protein concentrations,
or mutations in the capsid protein�. Such polymorphic behav-
ior is very fruitful to study in quasiequivalent models: it
effectively explores more of the various local geometries in
which the proteins can bind and thus can allow more param-
eters to be determined, in principle. This paper develops a
model of irreversible �nonequilibrium� assembly of
quasiequivalent units, which produces a highly polymorphic
ensemble of capsids, which we argue below may model the
growth of retrovirus capsids.

It is worth mentioning that Tworock �18� has developed
virus tiling theory, an extension to Caspar-Klug quasiequiva-
lence, which uses rhombs and kites rather than triangles, and
can therefore describe the anomalous viruses from Pa-
povaviridae.

B. Recent models

The most successful recent capsid models consistent with
quasiequivalence are equilibrium theories: a microscopically
motivated phenomenological Hamiltonian is shown to be op-
timized by certain shapes, and it is assumed that this free-
energy minimum is found during the actual assembly pro-
cess. Thus Bruinsma et al. �13,19� modeled pentamers and
hexamers as different-sized disks packed on a sphere, with
an effective Hamiltonian favoring dense packing, a bending
stiffness with spontaneous curvature, and a switching cost to
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make pentamers �rather than hexamers� of the proteins.
When this switching cost is small, icosahedral viruses were
selected over nonicosahedral shapes �19�. Additionally, they
demonstrated polymorphism, similar to phenomena seen in
cowpea chlorotic mottle virus �CCMV�, by showing a phase
transition between tubes, T=3, and T=1 capsids as the
model parameters varied. Another family of models, intro-
duced by Nelson �20�, focuses on the external shape of large
capsids, using continuum elastic theory: the shape evolves
from practically spherical to sharply faceted as the size in-
creases or the bending stiffness decreases.

Alternate theories to quasiequivalence have also been de-
veloped, still in terms of an equilibrium picture. Most no-
table is the “local rules” theory �21–23�, which posits several
“flavors” of unit, with inequivalent edges, and rules for the
joining of these different kinds of edges so the units fit to-
gether like puzzle pieces and there is a single unique struc-
ture that obeys all the matching rules. It is generally neces-
sary to assume that the same capsid protein molecule has
different conformation species, each of which has entirely
different specific binding. It appears implausible that so
many different functions could be built into one molecule, or
that evolution could have discovered this solution, if it is the
only way to engineer a large capsid. We therefore prefer a
theory without such matching rules.

Another class of theory focuses on the process of assem-
bly, which one might expect is far from equilibrium. In par-
ticular, Zlotnick �24,25� has focused on the kinetics of capsid
growth. Using a basic unit of 5T proteins, so that the com-
plete capsid is a dodecahedron of 12 units, and a free energy
based on the number of adhered edges, he considers the spe-
cies of the most stable incomplete capsid of any size and
constructs rate equations relating the concentrations of each
species. This leads to the phenomenon of the kinetic trap: if
the initial concentration of monomers is too large, they ag-
gregate quickly into larger structures, slowing the later stages
of growth since the required monomers are depleted.

Similar kinetic models have been extended using the virus
tiling theory �18�. Keef et al. �26� extend Zlotnick’s work
and consider the effect of different association energies on
the kinetics of Papovaviridae assembly.

So far we have limited our discussion to icosahedral vi-
ruses. While there is some polymorphism in icosahedral
viruses—usually changing T numbers under different
conditions—the capsids are still generally symmetric. Ma-
ture retroviral capsids, on the other hand, have been observed
to be very irregular �27�.

C. Retroviruses

Retroviruses, such as human immunodeficiency virus
�HIV� and rous sarcoma virus �RSV�, are RNA viruses which
all contain a characteristic enzyme—reverse transcriptase—
allowing the RNA to be transcribed into DNA for infection.
Upon infection, the virus produces copies of several
proteins—in particular, the structural polyprotein Gag. Many
copies of Gag �approximately 1500 for RSV �28� or 5000 for
HIV �29�� aggregate at the cell membrane before budding
out of the cell as an immature virus particle. A maturation

step then takes place in which a protease cleaves Gag into its
constituent proteins: matrix �MA�, capsid �CA�, and nucleo-
capsid �NC�. After cleavage, the MA remain bound to the
lipid membrane and the NC remain bound to the RNA. A
fraction of the CA then reassemble into the mature capsid
�30�. In HIV, this fraction has been measured to be roughly
30% �29,31�.

Ganser et al. �27� proposed a model to point out that the
cones formed by mature HIV cores must have quantized
angles and measured this on electron micrographs. Later
studies have measured these angles and other data using
more accurate tomography �32,33�. In addition to the irregu-
lar structure, polymorphism is also observed in the switching
between tubes, cones, and spheres under different conditions
�34�. RSV, on the other hand, has cores that are observed to
be roughly spherical, but with a wide distribution in the de-
gree of asphericity �35�.

There is a significant variation in the size and shape of
mature HIV capsids, but they are commonly cones. Follow-
ing the quasiequivalence paradigm, these are described geo-
metrically by locally triangular lattices like carbon fullerene
cones �36,37�. There is no well-established explanation of
the cone’s shape or size. Briggs et al. �32� suggest that the
small end of the cone forms first, possibly from a sort of
template, and that the large end forms when the growing
capsid runs into the membrane. Benjamin et al. �33� instead
suggest that the large end is nucleated first. Nguyen et al.
�38� developed an equilibrium theory combining the ideas of
Refs. �13,20�, adding fullerene cones �37� to consideration.
Assuming a fixed size, they generate a family of configura-
tions of maximum symmetry, and find a phase transition be-
tween cones, tubes, and spheres as a function of the elastic
parameters. A weakness of their model, however, is that
cones are stable in a relatively small portion of parameter
space, and their appearance at all depends critically on the
assumption of a fixed size, which is unphysical. In HIV
maturation, only one-third of the CA proteins assemble into
the mature conical capsid, leaving the rest in solution within
the virus’ lipid envelope �29,30�. Thus, we should expect the
capsid size to vary freely. Later work by Nguyen et al. �39�
suggests that conical capsids are not energy minima, but are
instead selected by assembly constraints.

D. Outline

In the following pages we present our model of capsid
assembly, discussing our choice of energy and transitions,
which govern the growth of a capsid from a single unit to a
complete closed shell, by alternately minimizing the energy
and choosing a transition to a larger capsid.

We discuss common failure modes in this model and the
choices of parameters in which they arise. In particular, we
look at a mostly avoidable failure, which occurs at the end of
growth in which a small hole cannot be completed, and a
more problematic failure, which occurs in the middle stages
of growth and involves narrow “fingers” of capsid.

We then consider a number of ways to measure growing
and complete capsids, largely motivated by experimental
measurements. We present three main results. First, capsid
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size depends primarily on the spontaneous curvature, but
also on the ratio of elastic constants. Second, growth failure
is a roughly Poissonian process, and thus the probability of
successful growth decreases exponentially with the expected
size. Third, we discuss the application of our model to vari-
ous measurements of the shape of capsids, with particular
emphasis on the Gaussian curvature.

Finally, we summarize our results and discuss the advan-
tages and disadvantages of our model, and possible future
directions.

II. IRREVERSIBLE GROWTH MODEL

We now introduce a model to describe quasiequivalent
capsid assembly in a far-from-equilibrium picture. Consider
a single growing capsid and a number of units in solution.
We picture the units slowly accreting onto the growing
capsid until the finished product is formed.

Our choice is to represent this by adopting the simplest
possible model that can represent a growing capsid and be
simulated efficiently: this precludes representing each pro-
tein as a rigid body moving in space. Instead, a capsid �grow-
ing or completed� is represented by a triangular network
�Sec. II A�, with an elastic energy governing the bond
lengths and angles �Sec. II B�. We do not explicitly represent
the units in solution, instead formulating a set of first-order
rate equations for the addition of a unit to the capsid or for
other discrete changes in the network geometry �Sec. II C�.

Other physical or mathematical models have been ab-
stracted to a similar degree �13,19,20�, following a standard
philosophy of statistical mechanics. Some capacity to adapt
the model to �say� a specific virus species is lost, but the
simplicity makes it conceivable to grasp the physical mean-
ing of each parameter, and feasible to explore all dimensions
of the parameter space by simulations. Typically, only par-
ticular combinations of the microscopic parameters matter,
and a properly formulated toy model adopts those combina-
tions. It can happen that fairly different microscopic systems
may, through such elimination of unimportant parameters, all
map to the same simple model; in that case, the model offers
a possibility of unifying the description of all these systems.

A. Configuration degrees of freedom

Our formulation depends on two complementary kinds of
degree of freedom, a discrete kind we call “topological” and
a continuous kind called “positional.” The former consists of
a bond network built from triangles, with vertices either con-
nected by a bond or not; the latter consists of the actual
coordinates of the vertices in space. Since prior work empha-
sized equilibrium, we took the opposite limit by allowing no
change in any bond, once formed. One consequence is that
our discrete “topological” variables are more fundamental
than the positional ones: given a network of bonds, the
angles and bond lengths will relax to a constrained minimum
�or fluctuate thermally around it� as determined by a Hamil-
tonian, defined in Sec. II B. In our growth model, these po-
sitional variables feed back into the discrete ones by control-
ling the relative rates of alternative changes in the network as

units are accreted. �In principle, one could envisage a further
abstraction in which the positional variables are eliminated
completely and the rates expressed directly in terms of the
bond topology, but we did not attempt that.�

The models discussed above in Sec. I B all have essen-
tially just a single type of degree of freedom—the first, the
second, or something intermediate. Lidmar et al. �20� assume
a predetermined graph topology, so only the vertices’ posi-
tions are nontrivial. On the other hand, Endres et al. �40�
discard position information and only consider the �discrete�
connectivity. Finally, Bruinsma et al. �13� continuously vary
the positions of the disks, and determine which disks neigh-
bor one another secondarily.

It may be questioned why we have chosen triangles as the
fundamental building blocks. In a model more faithful to a
particular virus species, one would want to add the multimer,
which is accreted in nature. Virus species assembling from
dimers �41,42�, trimers �43�, and pentamers �hexamers� �44�,
have all been observed experimentally. HIV has so far
formed only dimers in solution �45�. Several groups have
done molecular dynamics simulations using solutions of
monomers �21,46� and kinetic simulations with pentamers
�24�, dimers �47�, or trimers �48�. Because of its simplicity,
and the work done on tethered surfaces by Nelson and co-
workers �20,49�, we will focus on a trimer-based model for
this initial work, an example of which can be seen in Fig. 1.
It is at this point worth noting that the hexagonal lattice,
which is dual to our triangular lattice, is in fact very similar
to the molecular lattices formed from HIV CA �50�.

Our use of triangle units is also influenced by the notion
of “universality” in physics, whereby the functional form of
elastic theory, or the critical exponents of a phase transition,
are independent of the particular lattice used at the micro-
scopic scale. In any of the alternative representations, one
can still define a triangular, locally sixfold lattice with rare
locally fivefold points in it. Much experience in statistical
mechanics suggests that, at “coarse-grained” length scales
�those large compared to the lattice spacing�, the behavior
stops depending on the details. However, two related caveats

FIG. 1. Example of a closed final capsid resulting from our
growth simulation, with � f =0.12r0, �0=16°, �I,J=50, and �
=12.7°. These parameters are explained in Secs. II B and II C. The
disclinations are marked by arrows.
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must be expressed: �i� possibly a detail of the microscopic
model forces a certain parameter of the coarse-grained model
to be strictly zero, thereby changing the qualitative behavior
�“universality class”�; �ii� it may be that a parameter regime
easy to achieve in one version of the model will require a
complicated fine-tuning of parameters in an alternate ver-
sion.

Caspar and Klug �16� noted that only pentamers and hex-
amers have small enough deformations to be allowed in
quasiequivalence, and thus any quasiequivalent capsid must
have exactly twelve pentamers. Quasiequivalence is based
on a flat triangular lattice, so that a pentamer is a disclina-
tion: a topological defect of the triangular lattice. This means
it can be characterized by effects at an arbitrary distance;
namely, if we parallel transport a vector around a loop, that
vector ends up rotated by �� /3�Ndisc from its starting orien-
tation, where Ndisc is the number of fivefold disclinations
enclosed by the loop. �This is called a “disclination charge”
by the analogy to how the electric charge enclosed by a
surface is determined by an integral of the electric field over
that surface, according to Gauss’s law.� That there are exactly
twelve disclinations can now be seen either by counting ver-
tices, edges, and triangles under the constraint V−E+F=2,
or more generally because the total disclination charge must
sum to 4� �51�.

Between the disclinations are patches of regular sixfold
lattice with no topological freedom: thus, the capsid is com-
pletely determined by the placement of the disclinations.
Since there may be hundreds of network vertices, and only
twelve disclinations, this is in principle a simplification.

B. Hamiltonian

We represent the growing capsid as a number of approxi-
mately equilateral triangles connected along the edges. We
then generalize the discretized Hamiltonian used by Lidmar
et al. �20� to include spontaneous curvature �0 and steric
terms.

H = Hstretch + Hbend + Hsteric. �1�

1. Elastic energy

The first two terms in Eq. �1� are elastic terms for bond
stretching and bending;

Hstretch =
�3Ỹ

4 �
�ij�

�	ri − r j	 − r0�2, �2�

Hbend =
2�̃

�3
�
�IJ�

�1 − cos��IJ − �0�� . �3�

Here, �ij� denotes pairs of nearest-neighbor vertices with po-
sitions ri, and �IJ� denotes pairs of nearest-neighbor tri-
angles. The exterior dihedral angle

�IJ = cos−1�n̂I · n̂J� , �4�

where n̂I is the unit normal to triangle I.

Our discretized parameters Ỹ and �̃ have the same dimen-
sions as the two-dimensional Young’s modulus Y and bend-
ing stiffness �, respectively, which are emphasized in con-
tinuum approaches to predicting capsid shapes �20�, and for
a flat sheet in the linearized regime the parameters have the
same values as well. If we parametrized our model by spring
constants Kstretch and Kbend equal to the curvature of our ra-
dial and angular potentials at the bottoms of their respective

wells, we would have Ỹ = 2
�3

Kstretch and �̃=
�3
2 Kbend. In most

cases �except in direct comparison with some experimental
measurements�, we are only concerned with the ratio of these
elastic constants. This ratio provides a length scale, the
Foppl–von Kármán length,

� f
2 
 �/Y . �5�

From this point on, we will take units such that r0=1, and
therefore the parameter � f is effectively dimensionless.

Previous work made this same ratio dimensionless using
the capsid radius R, rather than the triangle size r0, and thus
defined the Foppl–von Kármán number �20�

� = YR2/� . �6�

The capsid radius R is well defined in the case of a spherical
capsid, but for nonspherical capsids, a definition of R is
problematic; and in any case, � f controls many other proper-
ties, such as the exponential decay of strain and the Gaussian
curvature with distance from a defect. Thus, we consider � f
to be the more fundamental parameter and thus write �
= �R /� f�2. We note that a small � f corresponds to a large
Young’s modulus and therefore an angular �or faceted� re-
gime. On the other hand, large � f entails a large bending
stiffness and leads to a smooth regime �20�. Since our model
is two-dimensional, we are able to specify an arbitrarily large
� f. Physically, however, � f must be on the order of the capsid
thickness or smaller.

2. Spontaneous curvature and steric repulsion

Microscopically, we expect that capsid proteins are more
similar in shape to cones or pyramids, with the apex toward
the inside, than to cylinders �52�. Therefore, if two proteins
are in contact, the outer surface will be bent at a character-
istic angle. This suggests that Hbend should favor some dihe-
dral angle �0, appearing in Eq. �3�. Additionally, it motivates
our model of steric repulsion based on tetrahedra, explained
below.

The preferred dihedral angle �0 is a key parameter since it
is the main determinant of capsid size in our model, as was
speculated to be the case in real capsids �16�. This corre-
sponds to spontaneous curvature in a continuum model.

The final term Hsteric in Eq. �1� is a steric potential, chosen
to vanish for all physically realistic capsids. The steric po-
tential proves difficult to incorporate into our cartoon model,
for two reasons. Firstly, all the interunit interactions of prop-
erly bonded units should already be accounted for in the
elastic term Hstretch+Hbend, so we demand that the steric
force not make additional contributions to these forces. Sec-
ondly, the other terms in Eq. �1� relate units that are “topo-
logical neighbors,” as defined by the bond network �the dis-
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crete configuration�. But two topologically distant parts of
the capsid, may grow to be nearby in real space �the posi-
tional configuration�, and must then be kept from intersect-
ing. Thus, the steric term must apply equally to topologically
distant segments of the capsid, or to adjacent units, e.g., two
as yet unjoined triangles on the same vertex.

To implement a computationally tractable steric potential,
we imagine each triangle to be the base of an inward-
pointing tetrahedron, and add a repulsion between the apex
of each tetrahedron and the vertices on the base of each
other. This potential vanishes for physically realistic capsids.
A more technical discussion may be found in Appendix B,
and the steric Hamiltonian is defined in Eq. �B1�.

3. Microscopic estimation of elastic energy

Interactions between capsid proteins have been simulated
electrostatically �14� to determine binding energies for large
multimers of capsid proteins, necessarily in different relative
positions. Such simulations could be extended to determine
the elastic constants for particular viruses with known pro-
tein structure.

Alternatively, we can perform a rough estimate of the
elastic parameters by considering some experimental mea-
surements. Vliegenthart and Gompper �53� performed exten-
sive computational studies to relate experiments with atomic
force microscope �AFM� indentation of capsids to a model
very similar to ours. Thus, we can use these AFM studies to
determine the appropriate magnitude of Y and �. Ivanovska
et al. �54� carried out mechanical structure measurements on
the T=3 phage �29 and found the bulk modulus B
�1.4 GPa and the thickness t�2.5 nm. We obtain an esti-
mate of the two-dimensional Young’s modulus by Y �Bt
�3.5 N/m �38�.

We could also estimate the elastic parameters from persis-
tence length measurements. Maeda and Fujime �55� mea-
sured the tube-forming phage fd in suspension and deter-
mined the persistence length of the 9-nm-diameter tubes at
22 °C to be 3.9 �m. If we construct a tube out of our trian-
gular units, the persistence length would be

	p �
R

kBT

� +

8

9
YR2� , �7�

where R is the radius of the tube. Thus, we can conclude �
+ �8/9�YR2=Y��8/9�R2+� f

2��22 eV, which puts an upper
bound of 0.17 N/m on Y, in sharp contrast to the �29 results
above. Moreover, since fd is charged �56�, the purely elastic
contribution to the persistence length may be much smaller,
making our estimate very conservative. If we previously
knew either � f or one of Y or �, we could use this measure-
ment to determine the others.

To get an idea of the elastic parameters for HIV, we can
produce model capsids by hand, which resemble HIV cores.
In particular, we grew several capsids with about 500 tri-
angles in a cone shape. Tuning the elastic parameters to
roughly match the observed shape of HIV �33,53�, we found
�= �R /� f�2�550 produces the correct amount of faceted-
ness. This corresponds to r0 /� f =6. Using our results for
capsid size as a function of � f and �0, presented in Sec. IV A,

we can guess that such a capsid would require �0�20° to be
grown by our model.

Given a set of connected triangles �a topological configu-
ration�, we can now use this Hamiltonian to determine the
lowest-energy configuration of the positions of the triangles.
These positions correspond to a continuous degree of free-
dom which is now fully determined by the model �H� and
the connectivities—the discrete degree of freedom. Ulti-
mately, we are only concerned with the discrete configura-
tion.

C. Growth

We have noted that capsids are determined by the loca-
tions of the disclinations �pentamers�. For an irreversible
growth model, in which no step can be undone, the funda-
mental question is therefore: while growth occurs at the bor-
der, which twelve vertices are frozen in as pentamers? Keep-
ing this in mind, we will now discuss our capsid growth
process.

1. Growth steps

We define transitions between incomplete capsids, consis-
tent with irreversible growth, called growth steps. Two el-
ementary growth steps are immediately apparent: accretion
and joining. Accretion is the addition of a single triangle to a
border edge and joining is the formation of a bond between
two adjacent border edges. We require the vertex between
these two joined edges to have five or six triangles around it
in order to ensure that only pentamers and hexamers form.

Besides accretion and joining, we define a third, compos-
ite growth step: insertion. We define insertion as accretion
followed by joining along an edge of the new triangle. The
vertex into which we insert must have four or five triangles.
Insertion at a four vertex or joining at a five vertex is the
only way to form a pentamer. These three steps are illus-
trated in Fig. 2.

Growth begins with a small template—either a single tri-
angle or a pentamer of five triangles about a vertex. From
here, the growth is determined by the sequence of growth
steps, which is chosen stochastically. We will first present
our rules for the relative probability of choosing the growth
steps, and then explain their microscopic rationalization.

FIG. 2. Elementary growth steps of insertion, joining, and ac-
cretion, performed from the same starting point of an edge with
opening angle 
. Insertion can be decomposed into accretion fol-
lowed by joining.
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2. Rates

We precede each growth step by relaxing all vertex posi-
tions using a conjugate-gradient algorithm to minimize the
positional energy H. Now a rate k� is defined for each al-
lowed growth step �, which is a function of the local topol-
ogy and of the opening angle 
 between pairs of edges at
each vertex on the border, defined in Fig. 2. The probability
of step � is then taken to be k� /��k�; once a step � is picked,
we perform the step and iterate the process �beginning as
before with a relaxation�.

We take the accretion rate kA to be independent of the
local configuration: in particular, it is not a function of 
.

So long as we are concerned only with the outcome and
not the time taken to reach it, only relative rates are relevant.
Thus we can now define

kJ�
�
kA

= �Je
−
2/2�2

, �8�

kI�
�
kA

= �Ie
−�
 − �/3�2/2�2

, �9�

with justification to follow. Note that steps are only consid-
ered if �1� they do not break any topological rules by enclos-
ing a vertex with other than five- or sixfold coordination, and
�2� they do not lead to steric hindrances. This second point is
discussed further in Appendix B.

3. Microscopic justification of rates

While many models explicitly account for units in solu-
tion and fluctuations in incomplete capsids �22,46�, we have
chosen a simplified cartoon model. Implicit to this is the idea
that the capsid is thermally fluctuating between growth steps.

Say the time between successive additions is longer than
the relaxation time scale of the positional degrees of free-
dom. Then between each growth step, we can assume that
the incomplete capsid is in equilibrium and thus samples a
Boltzmann distribution. We consider the energy of fluctations
about the relaxed position. For a particular vertex i, with a
relaxed opening angle 
i, the energy of a fluctuation with
opening angle 
i+�
i is well approximated by a quadratic,
so that

�E��
i� �
1

2
Ai��
i�2. �10�

We can therefore determine the elastic energy barrier for a
vertex to have an angle favorable for either insertion �
i

+�
i�� /3� or joining �
i+�
i�0�, and thus the transition
rates, kI�
i� and kJ�
i�, respectively �Fig 3�. It is now clear
that the rates defined above in Eqs. �8� and �9� are merely
Arrhenius factors, with

�2 =
kBT
Ai

. �11�

where T is temperature.
During any growth step, new bonds are formed. We may

consider an extra energy term, Hbind=−NbEb, contributing a

binding energy −Eb for each of the Nb bound edges in the
capsid. Such an energy is independent of the positional con-
figuration. For our irreversible model to satisfy detailed bal-
ance, we need Eb
�E��
i� so that the energy barrier for the
reverse transition is large compared to that for the forward
transition.

The parameter Ai and therefore � depends not only on the
elastic constants, but also on the local environment of the
vertex in the capsid. We can determine normal values for Ai
by varying angles on different capsids with different energy
parameters, and twice differentiating the Hamiltonian about
the minimum. Because most of the opening angle fluctua-
tions in physical situations are in plane, Ai depends most
strongly on the Young’s modulus, and generally

Ai =
�2H
�
i

2 � 0.1Ỹr0
2. �12�

�Note that this is an absolute dependence on the energy scale

Ỹ, and is the only reference we will make to an absolute
energy, since everything else depends only on the ratio

�̃ / Ỹ =� f
2.�

We can perform a rough estimate of this width �. Using
the elastic parameters estimated for fd in Sec. II B, and as-
suming r0�4 nm, we find Ai�0.1Yr0

2�17 eV. We therefore
expect fluctuations of

� =�kBT
Ai

� 0.038 � 2.2° �13�

at room temperature. We will need ��10° for satisfactory
growth—a reasonable possibility considering that we conser-
vatively ignored bending rigidity and charge. Had we per-
formed this estimate using the much larger value of Y from
�29, we would find fluctuations an order of magnitude
smaller, leading to a regime in which growth is not feasible.
But the �29 measurements were taken from the head of a
mature bacteriophage, which is observed to be much more
faceted �small � f, large Y /�� than the immature form in
which assembly occurs. Such small fluctuations are probably
important for stability and infectivity, but also quite detri-

FIG. 3. A representation of the energy as a function of opening-
angle fluctuations �
i. When 
i+�
i reaches either 0 or � /3, we
imagine joining or insertion, respectively, occurring, reducing the
total energy by Ebind for joining, and some combination of Ebind and
a chemical potential for insertion.
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mental to growth �57�. As such, we expect the immature
capsid to have much larger fluctuations, although no me-
chanical studies have been done to allow this determination.

Sometimes a deterministic growth rule is preferred to the
stochastic rule presented above. One possibility is a rule that
accepts only the move with the largest rate at any given
point.

III. FAILURE MODES

The restriction that all vertices have either five or six tri-
angles can lead to problems in irreversible growth. It is en-
tirely possible for a growing capsid in our model to perform
a wrong growth step resulting in a state which can never be
completed—that is, no complete capsid satisfying the
pentamer/hexamer-only requirement includes the particular
incomplete capsid in any of its possible growth histories.
This section surveys two common failure modes. A common
theme is that the failure can be identified nonlocally, long
before a step is reached at which the growth rules break
down; a more rigorous treatment is given in Appendix A.

We cannot avoid considering failures, since we must ex-
clude them when reporting statistical distributions of the re-
sulting capsid ensemble �see Sec. IV�. More importantly, we
have taken for granted that actual physical assembly has a
high success rate �say, 10% to 99%�. Indeed, most of our
labor on the project reported in this paper consisted of locat-
ing the region of parameter space in which assembly had a
high success rate. Classifying the failure modes is a prereq-
uisite to understanding what conditions reduce or eliminate
them.

Failure modes are also experimentally pertinent. What-
ever the “ideal” capsid is for a given virus species, there is
likely to be more than one possible assembly model that
produces it. But since different models will tend to fail in
different ways, they are better distinguished experimentally
by the study of defective rather than of ideal capsids. If there
are virus species that grow their capsids near the limit of
complete irreversibility, the resulting ensemble is bound to
contain mistakes. Indeed, HIV cones have been observed that
are surrounded with what is believed to be a second com-
plete sheet of capsid protein �33�.

A. Unfillable quadrilateral hole

First we look at a failure that occurs only at the end of a
growth process. Figure 4�a� shows a common configuration
with a single quadrilateral hole. Parallel transporting a vector
around the border gives no rotation and therefore there is no
net disclination inside �the net “disclination charge” is
zero—recall the discussion in Sec. II A�. The only conceiv-
able filling is with two triangles, but either possibility intro-
duces a seven-coordinated vertex �58�.

A less trivial example of this situation is shown in Fig.
4�b�. Here we can parallel transport a vector around the bor-
der to see that a single disclination must reside within the
border; however, there is no way to fill in the remaining
triangles to satisfy this. See Appendix A for a more rigorous
discussion of this phenomenon. If we continue growth, the

hole will eventually shrink to something similar to Fig. 4�a�.
Some believe that such a hole is not detrimental to capsids,
and in fact capsids are suspected to be permeable to water
and ions. On the other hand, HIV is known to have a
particle-to-infectivity ratio on the order of 100 �59�, and such
holes, if they are very common and detrimental to infectivity,
may explain why 99% of virions are not infectious.

This type of failure was common in all the growth rules
we considered, although it is more prevalent in certain situ-
ations. In particular, if the growth rate parameters defined in
Eqs.�8� and �9� are large, ��20 or �I,J�200, then creation
of pentamers becomes very random and is no longer based
on the configuration. In normal growth, particularly at small
� f �angular regime�, local strains cause angles along the bor-
der to suggest whether a pentamer or hexamer should be
created, but large � decreases the sensitivity to this.

B. Crevice formation

Next we look at a failure that can occur at any point
during the growth, called a crevice. We see in Fig. 5�a� a
portion of a border with the four labeled vertices in a char-
acteristically incompletable configuration. This becomes
clear when the border is flattened onto a reference lattice, as
seen in Fig. 5�b�. We now see that in the absence of pentam-
ers in the neighborhood of this section of border, several
triangles lie on top of others. The introduction of a pentamer
can only make matters worse. By effectively cutting out a

FIG. 4. Incompletable holes at the end of growth. Neither hole
can be filled without introducing a heptamer. The hole in �b� would
have been avoided had the circled vertex been made a pentamer.

FIG. 5. �a� An incompletable configuration. The sequence of
vertices with 3, 5, 5, and 3 triangles on a border can never lead to a
valid complete capsid. Joining the marked edges would produce an
unfillable quadrilateral hole, similar to Fig. 4�a�. �b� The same bor-
der flattened onto a triangular reference lattice. The shaded triangles
from �a� now overlap the corresponding triangles from the opposite
side.
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60° section of the plane, it becomes even more crowded. The
only way to alleviate this self-intersection is by introducing a
negative disclination �heptamer�.

Crevice failures can occur in different regimes, but arise,
in particular, during fingered growth. If accretions are much
more common than both joinings and insertions �such is the
case when either ��5° or �I,J�1�, then we expect many
long fingers only one or two triangles wide. Crevices occur
easily between these fingers. Even in the absence of fingers,
sometimes creating a pentamer will distort a neighboring
vertex enough that the angle is too large for insertion or
joining. This too often results in a crevice.

Say a single crevice failure occurs during growth. Further
growth outward from the failure should be prevented by
steric hindrance. But growth elsewhere along the border will
continue and eventually fill in the crevice from its far end.
Then the capsid will almost complete, leaving a small hole of
the same type discussed in Sec. III A above. The two marked
edges in Fig. 5�a�, for instance, might eventually join, leav-
ing a quadrilateral hole.

If two or more crevice failures occur, however, our mod-
el’s resulting capsid will have a network of cracks connect-
ing these failures. Real capsids might repair this problem by
binding edges not sharing a vertex �which is forbidden in our
model�; in that case, the final result might instead have sev-
eral small quadrilaterals of the type seen in Fig. 4�a�.

Although it is not as obvious, the smaller holes presented
in Sec. III A also have borders whose flattened images inter-
sect themselves when cut at certain places. We can general-
ize this by stating that a border is incompletable if there is
any choice of cut that leads to any triangles along the flat-
tened border intersecting one another. The converse is true in
most cases as well.

C. Failure rates

If fivefold vertices were simply incorporated at random
moments during the growth, virtually every capsid would fail
in one of the two modes described in this section. Since the
topological constraints to be satisfied are nonlocal, and the
growth rates depend on local properties, it seems mysterious
at first how the growth can be as successful as it is. The key
is that, in an elastic medium, the strain due to a defect �such
as a disclination� is also nonlocal; at least, it decays as a
power law with the distance from the defect. In this fashion,
the necessary information about the location of a faraway
disclination is passed to the growth border.

Since growth is stochastic, there is a possibility of errors
despite this passage of information. All capsids are in danger
of making an error after the eleventh disclination is in place,
and many are in danger even earlier.

We can model the failure probability with a very simple
assumption: each time a triangle is added, there is a fixed
probability pc�1 of starting a crevice. This is not intended
quite literally: pc must be understood as the fraction of edges
along the border that can possibly start a crevice, multiplied
by the probability on each such edge that this “wrong” step
will be taken when a triangle is added there. �The crucial step
might be a “joining” but this contribution gets folded in with

the other one, since the border settles into a dynamic near-
steady state, so that the ratio of step types will be uniform on
averge.�

The survival probability of a defect-free capsid is thus

dPsur

dN
= − pc, �14�

where step N plays the role of time, so that

Psur�N� = P0e−pcN. �15�

Growth will terminate after all twelve disclinations have

been incorporated, i.e., on average when N= N̄��0 ,� f� �the
mean size of capsids formed as a function of the parameters�.
Furthermore, we hypthesize that pc� pc�� f�, i.e., crevice for-
mation depends strongly on the ratio of elastic constants and
almost not at all on the preferred angle �0. If so, the prob-
ability of success is

Psucc = Psur�N̄� = e−pcN̄. �16�

Indeed, we will see the dependence of pc and P0 on � f in
Sec. IV B.

IV. RESULTS

Here we discuss several measurements that can be used to
quantitively characterize various properties of capsids �indi-
vidually, or as an ensemble� specified by a triangulation of
vertices, such as the results of our growth model. Our results
fall into three general categories: size, success, and shape.
First, we look at the size of the resulting capsids and show
the dependence on the elastic parameters. Next, we look at
the probability of successful growth, in terms of both the size
of the capsid and of the growth-rate parameters. Last, we
comment on measures of capsid shape, which, along with
capsid size, is a measurement that can be used with data from
cryo-EM experiments.

Figure 1 shows an example of a typical capsid shell re-
sulting from our growth simulation. This capsid emphasizes
that our configurations are inherently random and irregular.
The degree of “lumpiness” in the external shape depends
strongly on the Foppl–van Kármán length � f, as is elaborated
in Sec. IV C, below.

Each capsid is grown until either a successful completion
or an identifiable failure, such as a self-intersection in the
flattened border. Relaxations are minimized until the gradient
squared is less than 10−6 in units with Kstretch�Kbend=1. The
entire growth process for a small capsid takes several min-
utes on a 1.6 GHz processor, while a large capsid takes many
hours, the majority of the time devoted to minimizing en-
ergy. The following plots of size and success rate include
data from 134 352 capsids.

A. Size

The simplest thing to observe about a capsid is its size.
We can count the number of triangles N, or measure the
average radius R. As expected �13,16�, capsid size depends
most heavily on two parameters from our effective Hamil-
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tonian, � f =�� /Y and �0, which we rewrite as a length

�� 

r0

2�3
cot��0/2� . �17�

This length is the radius of curvature from two equilateral
triangles with side length r0 joined at an angle �0 and tangent
to a common sphere. We now have three length scales, r0, ��,
and � f. It is useful to think of these as two dimensionless
parameters, 1 /�� and 1/� f, taking r0=1.

In the smooth regime, when 1/� f �50/��, the variation in
the dihedral angles at different bonds is small, so the radius
of the resulting capsids approaches ��. For larger 1 /� f �the
angled regime�, the Young’s modulus increases. Hexamers,
which make up most of the capsid, become flatter. Thus, the
effective preferred angle �0

eff decreases, resulting in larger
capsids.

We simulated many capsids assembling at four values of
1 /� f and �0 between 7° and 36°. For each set of parameter

values, we averaged the radius of the completed capsids, R̄,

and plot the inverse of the radius 1/ R̄ as a function of the
spontaneous curvature 1/��=2�3tan��0 /2� in Fig. 6 for sev-
eral different values of � f. We see that, for large � f, the

curves roughly follow the line 1/ R̄=1/��. As � f decreases,
we see a very different behavior, which favors small �mostly
T=1� capsids for a much larger range of �0, before the size
suddenly increases very quickly around 1/���0.7. We can
see what is behind these curves in Fig. 7, which shows the
average growth history for several individual parameters,

represented by the average number of pentamers P̄ as a func-
tion of the number of growth steps t.

B. Success rate

An important consideration for an irreversible growth
model is under what circumstances it successfully produces
complete capsids. We have already shown that a variety of

failure modes exist, resulting in incompletable capsids. We
can easily quantify how often these failures actually occur as
a function of parameters. We predicted in Sec. III C that the
success rate should be exponential with the expected size of
the capsid. For each choice of parameters, we average the
sizes �measured by the number of triangles, in contrast to
radius as in Fig. 6� of the capsids, and thus map the param-

eters �0 and � f to N̄��0 ,� f�. We then plot the percentage of
capsids that completed successfully when grown with these
parameters in Fig. 8. While there is systematic deviation
from exponential decay, due to the many considerations left
out of our analysis, we do still see a mostly exponential trend
in the data.

We see in Fig. 8 that for a given size, growth is generally
more successful for more faceted capsids. For large capsids
�best-fit radius r̄�10r0�, the failures in the smooth regime
�1/� f

2�10/3� all occurred in the early stages of growth, in

FIG. 6. �Color online� Plot of 1 / R̄ vs 1/��=2�3tan �0 /2, in
units of r0. We see that in the smooth regime of small 1 /� f, the

mean capsid radius R̄ very nearly follows ��. In the angled regime
�large 1/� f�, we find smaller capsids �many T=1� for a much larger
range of 1/��, followed by a sharper increase in size at smaller
cunrvatures. Parameters with fewer than ten successful capsids
were omitted.

FIG. 7. Plot of the average number of pentamers P̄ vs the step
number t, which is nearly equivalent to the number of triangles N.
This gives a picture of the general pathway of growth behind the
curves in Fig. 6. This growth was carried out at 1 /� f

2=10/3, and
different spontaneous curvatures �0 as shown in the figure. We see
that growth consists of an initially slow process to add the second

pentamer, followed by a rather linear regime in which dP̄ /dN is
roughly constant. Note that both the initial rate at P=1 and the
following slope depend on � f.

FIG. 8. �Color online� Plot of success rates as a function of N̄
for the given parameters, from the size measurements. We see a
somewhat exponential decay, suggesting that the introduction of
errors is a Poissonian effect, as discussed in Sec. III C.

IRREVERSIBLE GROWTH MODEL FOR VIRUS CAPSID… PHYSICAL REVIEW E 74, 031912 �2006�

031912-9



which only a few pentamers had been added. This suggests
that large bending stiffnesses lead to more common crevice
failures. On the other hand, the faceted capsids �1/� f �10�
failed mostly in the late stages, in which only several pen-
tamers were missing, suggesting that faceted capsids are
somehow resistant to crevice failures and instead fail with
small holes.

In Sec. III, we mentioned the impact of the rate param-
eters �I,J and � on successful completion. We measured the
failure rate as a function of these parameters, using reason-
able values of �0=16° and � f

2=0.1. In Fig. 9 we plot the
fraction of failed capsids due to either small holes at the end
of growth, or crevice failures in the middle of growth. We
see that small values of �I,J and � indeed produce errors.
Larger values of � and �I,J produced successful capsids, but
almost all were T=1. This particular result is very sensitive
to our particular growth rules, and a choice that prevented
insertion until there were five triangles around a vertex
would drastically change the result.

C. Shape

Beyond size and success, most other measurements fall
under the category of shape measurements. In particular, we
might measure either the degree of symmetry or the faceted-
ness of a capsid.

Spherical harmonics may be useful for evaluating icosa-
hedral symmetry, as spherical harmonic coefficients of icosa-
hedrally symmetric functions vanish for all but �
=0,6 ,10, . . . .

Kingston et al. �35� uses the asphericity, defined as the
ratio of inradius to circumradius to measure the faceted
shape of RSV capsids. Lidmar et al. �20� also defined an
asphericity, �R2� / �R�2. While these are good measurements
for symmetric capsids, they are not useful for the irregular
capsids we grow because they cannot distinguish between,
for instance, a smooth egg-shaped capsid and a faceted

spherical capsid. We instead use a measure based on the
Gaussian curvature, described below.

1. Curvature

In light of recent advances in tomography, a very relevant
measure is Gaussian curvature K. In our discrete triangular
model, we can measure the integrated Gaussian curvature I
=�Kda over the neighborhood nearest to a single vertex by
measuring the area �equivalently, angle surplus� of the
spherical polygon traced out by the incident triangles’ unit
normals. We can easily extend this to the integrated curva-
ture over all the vertices within any loop around the capsid.
The integrated curvature over the entire capsid is always 4�,
a topological invariant related to the Euler characteristic. The
question then arises how this curvature is distributed over the
capsid. For highly faceted capsids, each pentamer has I
�� /3, while the rest of the capsid has I→0. On the other
hand, the curvature is distributed uniformly over smooth
capsids. This motivates the definition of an inverse participa-
tion ratio �IPR�

P =

�

j

Ij�2

�
j

Ij
2

=
�4��2

�
j

Ij
2

, �18�

where Ij is the integrated curvature about vertex j. This es-
sentially measures the number of lattice sites the curvature is
localized to. The IPR is plotted for a single capsid relaxed to
different elastic parameters in Fig. 10. We see that P=12 at
� f →0 while P→Nvert at � f →�.

This same integrated curvature can be measured on trian-
gulated tomographical data from capsids. The integrated cur-
vature within large loops should be relatively stable even if
the Gaussian curvature varies quickly. For an arbitrary loop
around a capsid, we will get a contribution of � /3 from each
enclosed pentamer. The loop may then be pulled tighter to
pinpoint the location of each pentamer. We simulated this

FIG. 9. �Color online� Success fractions as a function of rate parameters �I,J and � ��=8°, top left; �=12°, top right; �=16°, bottom left;
�=20°, bottom right�. The square markers show the fraction of successful capsids at each parameter, including small capsids. For �
=16° ,20°, the hexagons mark the fraction of total capsids, which were small �successful and less than 46 triangles, or pseudo-T�2�. The

smaller values of � had no such capsids. Finally, the triangular markers show the average number of pentons P̄error at the time of error

detection. Note that P̄error→12 means that all the errors are small holes at the end of growth.
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process by growing a large number of random capsids and
integrating the curvature within many random loops on each.
Each capsid was relaxed to several different values of � f. The
resulting distribution of curvatures is displayed in Fig. 11. At
large 1/� f �20 we see very sharp peaks. These peaks diffuse
into a mostly uniform background by 1/� f �2.

2. Average dihedral angle

We can measure the average dihedral angle of either a
growing or a complete capsid. Figure 12 shows a graph of
the average dihedral angle for a very large pentagonal sheet
with a single disclination in the center as a function of � f, at
different �0. We see a first-order phase transition at �0=0.

V. DISCUSSION

In this section, we recapitulate the highlights of our model
and the simulation results, and outline extensions that could
improve their realism.

A. Summary of results

Our irreversible growth model, based on trimer units with
the simplest possible Hamiltonian and growth rates, did suc-
ceed at producing closed capsids, but only when the param-
eters are tuned to the proper range: 1 /� f �10, �0�8°, �I,J
�50, and most importantly, ��12°.

Our model �Sec. II� made a sharp division between con-
figuration variables that were continuous �position� and dis-
crete �bonding topology�; correspondingly, the model param-
eters were divided between a Hamiltonian �harmonic form�
and rate constants for a set of first-order processes; for sim-
plicity, monomers in solution were not treated explicitly. The
model’s most distinctive feature is its use of trimer units
�triangles�, which turns out to have several inherent disad-
vantages. First, our “insertion” step �Sec. II C� seems as
though it should be redundant; unfortunately, omitting this
�relying on the “joining” step in its stead� produces abundant
failures—the fingered growth and crevices discussed in Sec.
III B. In other words, good growth depended on joinings
being rare compared to insertions, which followed from our
growth rules �Sec. II C�, since opening angles 
 near 0° are
much less common than those near 60°. This may mean that
if a capsid assembles from trimers in solution, the only way
to have normal growth is that there must be cooperative
binding as in our insertion step.

Our results may be divided into two categories: the
growth process �including the success rate� and the shape of
the resulting model capsids. In the first category, we found
mathematical descriptions �Appendix A�, which clarified the
constraints on the positions of the fivefold-coordinated verti-
ces, which fully characterize the bond network. Additionally,
we uncovered a simple relation between the chance of failure
and capsid size, Eq. �16�. In the second category, we showed
the relationship between the capsid’s final size and the two
length parameters � f and ��. In contrast to Nguyen et al.
�38�, we note that the average capsid size is indeed well
determined by the spontaneous curvature parameters for
large capsids, even in the absence of any scaffolding consid-
erations. We also extended the concepts of Ref. �20� to ir-
regular capsids. In particular, the ratio of bending and

FIG. 10. Inverse participation ratio for four capsids with differ-
ent numbers of vertices Nvert. We can see that at � f =0 �the angular
limit�, P=12, and as � f increases �the smooth limit�, P→Nvert. The
exact shape of the curve depends on the placement of pentamers,
but in general we see an inflection point around � f =0.18, which
corresponds to �=R2 /� f

2 roughly between 200 and 400.

FIG. 11. Distribution of integral curvatures within random loops
around random capsids relaxed to four different elastic parameters,
characterized by �= �R /� f�2. The distribution is sharply peaked at
the integers for the angled regime at small � f and diffuse for the
smooth regime at large � f.

FIG. 12. Average dihedral angle of a large pentagonal sheet with
a single disclination in the center. Plotted vs � f at different �0. The
bottom �0=0 curve shows a first-order buckling phase transition.
Each subsequent curve increments �0 by 0.25°.
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stretching stiffnesses—which we suggest is best param-
etrized by a length, Eq. �5�, rather than a dimensionless
ratio—controls whether the resulting shape is smooth or an-
gular, as we have characterized by an inverse participation
ratio, Eq. �18�.

One application of our results from different � f relates to
phage maturation. Many phages include a maturation step in
which the assembled prohead greatly increases its stretching
stiffness relative to its bending stiffness, making it more fac-
eted. One might ask why the assembly process occurs in the
smooth regime, especially since our results in Sec. IV B
show that the probability of success is smaller in this regime.
We propose that the advantage of growth in the smooth re-
gime is size selection. In Fig. 6 we see that faceted capsids
have a sharp transition in size around the region most phages
fall into �T=3 to T=7�. As might be expected, for a given set
of parameters, the spread of capsid sizes is also much
broader near this transition. Thus, in order to well control the
size of assembled capsids, a virus might prefer to grow in the
smooth regime, counting on other factors such as scaffolding
to increase its chances of successful assembly.

B. Future directions: More realistic random growth

1. Models with nontrimer units?

The retroviral CA proteins we claim to model have well-
documented dimerization �60� and hexamerization �61� inter-
actions, but no trimer interactions have been observed in
retroviral capsids. A model based instead on pentamers and
hexamers could be implemented simply by changing the
growth steps to add several triangles at a time, so as to fully
enclose a single vertex each step into either a hexamer or a
pentamer. We gain some benefit, however, from actually
changing our representation to a honeycomb lattice—the
dual to our current triangular lattice. Vertices of the dual
lattice are all three coordinated, so each vertex along the
border has either one or two capsomers attached to it—much
simpler than the five different possible coordination states for
border vertices in the trimer model. In this model, growth
rules could explicitly depend on the total coordination of a
vertex. Such coordination-based rules greatly assisted suc-
cessful growth in our trimer model, but were not as physi-
cally justifiable as they are in the dual model.

These considerations suggest that behavior arising from
this choice is not universal. We expect models based on
dimers, trimers, or pentamers and hexamers to fall into dif-
ferent universality classes.

Another direction leading to a more realistic model is to
improve the accuracy of our interactions. Microscopic elec-
trostatic simulations, such as with the CHARMM software,
could provide a more realistic Hamiltonian for specific vi-
ruses, which could be included in future models.

2. Lattice fluctuations

A deeper understanding of the relationship between topo-
logical configurations is critical. So far we have only thor-
oughly considered irreversible growth transitions. Other tran-
sitions relate to the motion of disclinations on the lattice

�always in pairs�, both for the purpose of enumerating the
near-symmetric states, and for an understanding of the rear-
rangement dynamics by which real capsids may anneal their
bond configurations into the free-energy minima predicted
by many equilibrium models.

C. Future directions: Realistic shapes

All well-studied real capsids exhibit greater regularity
than our current model can regularly generate. How can the
Hamiltonian �or the growth dynamics� be modified so as to
generate an icosahedral, or �for HIV� conical capsid?

1. Icosahedral symmetry

The main challenge for theory is to explain the assembly
of icosahedrally symmetric capsids, if one is not close to
equilibrium. Hamiltonians such as ours do indeed give effec-
tive repulsion between the disclinations, and the free-energy
minimum is known to have icosahedral symmetry in similar
models �13,20�. However, this is simply insufficient to pro-
duce large symmetric capsids in a model where the accretion
rate depends on local geometry, since the growing border
does not contain enough information in just the opening
angles �Sec. II C�. Even deterministic variants of the growth
model never yielded icosahedral capsids larger than T=4.

We speculate that if the bending potential Hbend was not
simply harmonic around �0, but instead had minima at two
different angles �1 and �2, this might robustly favor a regular
pattern of edges with �1 and �2, thus permitting the determi-
nation of larger icosahedral capsids. A double-well potential
would presumably represent some sort of conformational
switch, perhaps an internal bending between two domains of
the capsid protein. Thus, this proposal has some features in
common with the matching-rule models that we dismissed as
implausible �Sec. I B�, but anharmonic potentials seem much
more natural than variations in the edge binding �which, in
our model, corresponds to the term Hbind mentioned briefly
in Sec. II B�.

One other change, which could result in more symmetric
capsids, as well as more successful growth in general, is to
relax our irreversibility constraint. Allowing the growing
edge to “melt back” would allow a growing capsid to better
explore the possible configurations, in particular, curing
crevice and fingering defects.

2. Retroviruses

We asserted that the randomness of our model’s growth
behavior makes it appropriate for modeling the irregularity
and pleiomorphism observed in the capsids of retroviruses
such as HIV. However, mature HIV capsids do have a typical
gross shape, which is mostly conical �although sometimes
tubular� in vivo, whereas our current model grows round
capsids on average. A cone is charaterized by having �say�
five disclinations around its smaller end, seven around the
large end, and none on the belt between; this means the rates
of adding pentons must somehow vary during different
stages of the growth. When cones form inside an envelope,
the difference could be attributed to the depletion of the
monomers as they are incorporated into the capsid: that �see
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Sec. II C� would decrease the rate of insertion but not of
joining, leading to a greater chance of penton formation. A
difficulty with concentration control is that cone completion
leaves in solution 70% �29� of the capsid proteins: in order
for this to grossly affect the rates, accretion must microscopi-
cally be a rather high-order process. It also leaves unex-
plained the large density of pentons at the earliest stage: a
possibility is to add a simple interaction between the capsid
and either the nucleic acid or the membrane �33,32�.
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APPENDIX A: COMPLETABILITY

It is possible to grow an incomplete capsid that is not part
of any allowed capsid. This appears to be a consequence of
our rule that a capsid vertex can only have coordination five
or six. �Seven-coordinated vertices, were they allowed,
would let the capsid recover from almost every “mistake”
discussed in this section.�

As a complement to the more qualitative discussion in
Sec. III, this appendix presents the technical criteria we dis-
covered to identify when a partial capsid is or is not comple-
table, nonlocally and long before the growth rules carry us to
a point where we must make a sevenfold vertex or stop. The
completability conditions are defined entirely in terms of the
growing border, which can be uniquely described by travers-
ing the vertices �in a specified direction� and listing the num-
ber of triangles present at each vertex. Thus a string of num-
bers from 1 to 5 specifies a border. �6 is allowed, but is
trivial.�

1. String representation

We can represent any border by a word a1a2¯an, where
1�ai�6 is the number of triangles around the ith vertex,
counting clockwise from an arbitrary starting point. We de-
fine several operations on these string representations. First,
consider

A�a1a2 ¯ an� 
 1�a1 + 1�a2 ¯ �an + 1� �A1�

and

J�a1a2a3a4 ¯ � 
 �a1 + a3�a4 ¯ , �A2�

representing accretion and joining, respectively. Note that the
a2 term disappears upon applying J. This vertex is enclosed
and is no longer part of the border. We therefore require a2
=5 or 6. We can further define insertion I=J �A as the com-
position of joining and accretion. Finally, because we defined
these operations to act on the starting and ending points of

our string representation, we must define a cycle operation,
C�a1a2¯an�
a2¯ana1. Because of the unimportance of
the starting point in representing a border, cycling leaves
borders invariant. Since these operations are sufficient to
grow any capsid, we can uniquely describe a capsid by the
sequence of operations on the border required to arrive at the
border from a single triangle, 111.

Using this representation we can immediately identify
some borders that are incompletable. Consider the border X
=555¯ . Joining is illegal since it leaves a vertex with ten
triangles. Accretion leads to A�X�=6166¯, which clearly
cannot be completed since only joining can be done on the
6’s, and this leaves seven triangles at least one vertex. Fi-
nally, insertion yields I�X�=66¯, which is incompletable for
the same reason.

Any border that intersects itself on a flat reference lattice
is incompletable �coincident edges are allowed�. It is impor-
tant to take notice of which side of the border is the inside
�from which the triangles are being counted� and which is
the outside.

We thus define the complement of a border,

a1 ¯ an 
 �6 − an� ¯ �6 − a1� . �A3�

If the original border enclosed d disclinations then its
complement encloses 12−d and can be glued together to
form a complete capsid. We must note two things. Firstly, the
complement of a border may be a border that cannot possibly
be grown using our growth operations. Secondly, the
complement is only unique insofar as the seam between the
two incomplete capsids is occupied only by sixfold vertices.
However, many “pseudocomplements” may be constructed,
which leave disclinations on this seam.

While the border by itself is useful for analyzing comple-
tability, it does not uniquely describe the interior. An indi-
vidual border may have many different realizations, with dis-
clinations in different positions. In fact, a pair of
disclinations can move in opposite directions �relative to a
common reference lattice, if one exists� without changing the
border.

2. Winding number

We can compute the winding number W�a1a2¯an�

�i�ai−3� of a border, which is the number of 60° turns
undergone by a direction that is parallel transported about the
border. The total net number of disclinations within the bor-
der is W+6. If we allowed sevenfold disclinations, they
would be subtracted from this number. Since we only allow
single positive disclinations, we can conclude that the wind-
ing number around any path on a valid capsid must be be-
tween −6 and +6, leaving 6−W disclinations which must be
placed in the unfilled part �the other side of the border,
counting the vertices on the border itself�.

3. Six disclinations remaining

We will now show that any border with winding number
W=0 that does not intersect itself on a flat reference lattice is
completable by applying a finite number of growth opera-
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tions to the border, resulting in a self-complementary border
of the form 3m43n2, which can be glued onto a copy of itself
to make a complete capsid.

First draw the border on a flat reference lattice. It is now
clear that triangles can be added to the border to transform it
to the required form. So any capsid with a nonintersecting
border and W�0 is completable.

This procedure is demonstrated in Figs. 13 and 14.

4. Late-stage completability

When W�0, there are more constraints. We can no longer
add triangles freely since every row we add is smaller due to
the enclosed disclinations. We will begin by considering the
case of an incomplete capsid with 11 disclinations enclosed,
leaving a deficit of one disclination needing to be placed.

a. One disclination remaining

In this case we can easily look at the reverse picture. If
the border is completable then it is a path on a valid com-
plete capsid and we can therefore look for a pseudocomple-
mentary border to fill it. We can represent a triangular lattice
with a single disclination as a flat triangular lattice with a 60°
section cut out and the edges identified. If we therefore flat-
ten our border onto a flat lattice, we expect the first and last
points to be identified by this edge and therefore we can
draw an equilateral triangle with the third point at the re-
quired location of the disclination. While the edges of the
triangle need not be along a lattice direction, the third point
is necessarily on the lattice. The border is completable if and
only if this disclination is at an unoccupied point �outside of
the original border�. Note that because the border has a 60°

rotation, this point is unique, regardless of the choice of
starting and ending point. This process is demonstrated in
Fig. 15.

b. Two disclinations remaining

Two disclinations �W=4� work in a very similar way to
the single disclination discussed above, except we have a
120°-30°-30° isosceles triangle instead. This gives a single
charge +2 disclination, but since we do not allow two discli-
nations at the same point, we must move them slightly. Fig-
ures 16 and 17 show the two possible situations and equiva-
lent fillings with only single disclinations and the same
border. If the center is on a lattice point, then the disclina-
tions can each move in opposite directions to neighboring
points and the same region of the plane will be cut out, up to
a triangle at the apex, as shown in Fig. 16. If the center is in
the center of a triangle rather than on a lattice point, we can
place the two disclinations on adjacent lattice points around
the triangle for the same effect, as shown in Fig. 17. The
disclinations can be further separated in a similar fashion.

This breaks down if the +2 disclination is on a vertex on
the border which has four or more triangles. In this case there
is no way to separate the disclinations without one of them
crossing the border.

c. Three disclinations remaining

The case of W=3 follows the same way, except now we
find a +3 disclination on the midpoint of a line segment

FIG. 16. Rearrangement of a +2 �120°� disclination located on a
vertex into a pair of single disclinations with the same border. The
two shaded triangles are removed.

FIG. 13. Adding triangles to a W=0 border �a� to transform it
into the self-complementary form 3m23n4 seen in �b�.

FIG. 14. An alternate point of view of the same procedure as
illustrated in Fig. 13. We flatten the border onto a flat triangular
reference lattice. The dashed lines on the left and right correspond
to the place the border has been cut. That W=0 is evident because
there is no net rotation after traversing the border. It is also clear
that adding the dashed triangles results in the same 3m23n4 border
as above.

FIG. 15. A border with W=5. Parallel transporting a direction
around the border yields a rotation of 60°. A disclination must there-
fore be located within this border. The dashed line shows where we
plan to cut. �b� We see the same border flattened onto a reference
lattice. The 60° rotation is now more clear. The dashed lines are part
of an equilateral triangle and therefore show the required location of
a disclination. Any choice of cut results in the same location, as
long as the angle of the cut is chosen so that the triangle is
equilateral.
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joining the two identified points. This +3 disclination may be
on a lattice point or on the edge of a triangle. Both can again
be split similarly to the previous case, as seen in Figs. 18 and
19. As seen in the flattened pictures, the +3 disclination is
always within the border, provided the flattened border does
not intersect itself or the “cut line.” Thus outside of these
cases, the border is only incompletable if the +3 disclination
cannot be split properly without any single disclinations
crossing a border.

APPENDIX B: STERIC CONSIDERATIONS

Our triangular units are two-dimensional objects but they
represent three-dimensional structures in space. Thus, we
must explicitly ensure that two triangles can never be in po-
sitions, such that the proteins they represent would overlap in
space. This appendix collects details concerning the imple-
mentation of steric constraints. First �Appendix B 1� we
write the explicit form of the term in our Hamiltonian that
prevents self-intersection; then �Appendix B 2� we discuss
the way in which steric constraints tend to assist growth and
to discourage the wrong steps that lead to failure.

1. Steric potential

The final term in Eq. �1� was a steric repulsion term: since
our capsid units are two-dimensional triangles, some such
term has to be added by hand, to account for the thickness of
our three-dimensional proteins and disfavor unphysical con-
figurations. The details of this term were deferred from Sec.
II B to this appendix. The steric term should have the sim-
plest possible form, in keeping with the toy-model spirit of
our other terms.

In the steric term, the two kinds of degrees of freedom—
topological and positional—clash in a sense. Two units that
are nearby in space may be many steps apart on the bond
network, and thus practically decoupled from each other.

�There is little interaction in the elastic energy, and further-
more, the ways they constrain the available discrete growth
steps are independent.� Hence, Hsteric must consist of topo-
logically long-range, but positionally short-range, interac-
tions.

We chose an implementation based on augmenting each
triangle by another vertex over the face �on the interior side�,
thus forming a tetrahedron. We define a repulsion between
the apex vertex of each tetrahedron and every �nonapex� ver-
tex of every other triangle. Thus,

Hsteric = �
I,j

Vsteric�	rI
� − r j	� , �B1�

where �I is a sum over triangles and rI
� is an equal distance

�steric�r0 inward from the three vertices of the triangle. Fur-
thermore, we require Vsteric�r�=0 if r��steric, which is the
case for all pairs I , j in most capsids. This form allows the
edges of unconnected triangles to be incident while main-
taining Hsteric=0 so long as the triangles do not actually in-
tersect.

We choose the simplest form, that is differentiable at r
=0 and r=�steric,

Vsteric�r� = ksteric��steric
2 − r2�2, r � �steric. �B2�

Choosing �steric�0.65r0 generally provides sufficient steric-
ity while not interfering with the shape of non-self-
intersecting capsids.

It is important to stress that this steric term should not
affect most capsids. For nongrowing capsids, we generally
turn it off to increase efficiency, since it always vanishes.

2. Steric growth heuristics

While the steric potential discussed in Appendix B 1 is
useful to prevent capsids from relaxing to unphysical posi-
tions, it does not directly help the growth rules. Because
growth rules are based entirely on rates kA, kI, and kJ derived
from the local geometry around individual vertices, there is
no way to directly determine whether a step will cause a
steric hindrance. Because such growth steps are not likely to
occur in nature, we implement a heuristic to detect such steps
and remove them from the set of allowed growth steps by
setting the rate to zero.

Before any accretion or insertion, we perform two tests.
First we look at the steric potential Hsteric. If the accretion

FIG. 18. Rearrangement of a +3 �180°� disclination located on a
vertex into three single disclinations with the same border. The two
shaded triangles are removed. Note that vertices a, b, and c all
come together to form a single fivefold vertex.

FIG. 17. Rearrangement of a +2 �120°� disclination located on a
triangle into a pair of single disclinations with the same border. The
shaded part of the triangle is removed.

FIG. 19. Rearrangement of a +3 �180°� disclination located on
an edge into three single disclinations with the same border. The
three shaded triangles are removed and the vertices a, b, and c
collapse to a single fivefold vertex.
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causes Hsteric�0, then the accretion fails. Next, if the accre-
tion causes the centroid of one triangle to be within
�steric /�10 of the vertex of another triangle, then the accre-
tion fails. This is necessary because the first test misses the

case where two triangles are directly on top of one another.
This case is less important while minimizing, because mini-
mization would need to pass a large energy barrier, while
growth steps can jump over it for free.
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